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A molecular theory of adhesive rubber friction 

J M Golden? 
Road Safety Section, National Institute for Planning and Construction, 
St Martin's House, Waterloo Road, Dublin 4, Eire 

Received 16 December 1974 

Abstract. A theory of adhesive rubber friction is proposed where the final expression for the 
coefficient of friction obeys the Williams-Landel-Ferry transform and correlates with the 
viscoelastic shear loss modulus, as shown by Grosch and others. Our approach is based on 
the beadspring model for polymer chains of Rouse. 

1. Introduction 

The earlier work on building models of rubber friction (Schallamach 1953, Bartenev 
1954) pictured the rubber molecules as entering into, and breaking, bonds with the 
molecules of the track by thermally surmounting a potential barrier, this barrier being 
lowered in the direction of motion by an amount proportional to the applied force. These 
theories were consistent with the data available at the time. 

Subsequently, two factors contributing to  rubber friction were distinguished : 
(a) Hysteresis : rubber is a viscoelastic substance so there will be energy losses in a 

deformation cycle. If a block of rubber moves over a rough but lubricated surface the 
energy loss will result in a force resisting the motion. This force is referred to as hysteretic 
friction (Tabor 1955). Grosch (1963) has shown that the velocity-temperature depen- 
dence of this component of friction is that predicted by the WLF (Williams et al 1955) 
transform; in other words it can be regarded as a function only of a single variable 
x = Vf(T), Vbeing the velocity and Tthe temperature. The form off(T)is well approxi- 
mated by the empirical WLF formula which, with one substance-dependent parameter, 
holds good for a large class of polymers. One result of this fact is that all curves of 
ph( T),  the coefficient of hysteretic friction, against V or T separately can be shown to 
lie on a master curve & = ph(X). This is not so surprising since it is to be expected that 
ph will be related to the viscoelastic functions of the material which are well known to 
have frequency-temperature dependence as given by the WLF equation. In fact, Grosch 
(1963) quantifies the connection by showing a correlation between the velocity of 
maximum friction at a given temperature and the frequency at which the loss tangent 
(tan 4) is maximum, for the substance in question. The constant of proportionality 
he found to be a distance of order cm and is obviously characteristic of the rough- 
ness of the track. 

(b) Adhesion : this type of friction, regarded as being the primary contributor when a 
rubber block slides over a smooth unlubricated surface, is usually pictured as being due 
to molecular bonding between the rubber chains and the molecules of the track. A 
t Research Associate, School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington 
Road, Dublin 4. 
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somewhat more surprising result of Grosch (1963) is that pa(v T), the coefficient of 
adhesive friction, as a function of Talso respects the WLF transform; in other words 
pa is a function only of the variable x discussed above. Furthermore, at a given tempera- 
ture, the maximum of pa( V )  correlates with the maximum of the loss modulus C”(w) as a 
function of frequency. Here, the constant of proportionality is a length of molecular 
dimensions that depends only on the track. 

One concludes that the adhesive component of rubber friction, as well as its hysteretic 
component, is related to the bulk properties of the substance. Of course, this is perhaps 
not so surprising in view of the cross-linked macromolecular structure of the rubber ; 
because of this structure, a ‘tug’ at the surface, due to a bond with the track, will excite 
the cross-linked framework. The object of this paper is to model this effect in a simple 
way. 

Similar results to the above were obtained by Bulgin et al(1962)and Bartenev et al 
(1965), although the former correlate the friction coefficient with the loss tangent, and do 
not distinguish between adhesive and hysteretic friction. 

A number of partially successful attempts have been made to build models which 
predict the results of the last paragraphs. Schallamach (1963) revises his earlier theory 
concentrating now on adhesive friction and achieves qualitative agreement with experi- 
ment, together with, in some sense, a form for pa which possesses the WLF property. 
Rieger (1967) revived a theory of Prandtl(1928), considering a block of rubber sliding 
over a sinusoidal force with the rubber chains simulated by a Voigt element. Thismodel 
has certain features in common with the one proposed here. 

Lawrentew and Ostreiko (1968) have, from a simple argument based on equilibrium 
between bond formation and rupture, produced an expression for the friction force as a 
function of temperature and velocity which qualitatively agrees with experiment. 

Kummer (1966) has attempted a unified theory with adhesion and hysteresis treated 
on the same footing. We mention other interesting theories, Savkoor (1965), Hatfield 
and Rathman (1956), Ludema and Tabor (1966), and refer to two comprehensive reviews 
where these are discussed in some detail (Schallamach 1968, Moore 1972). 

The object of this paper is to present a model of adhesive friction, using existing 
mathematical models of polymers. This, to our knowledge, has not been done. Such a 
theory will be a ‘fundamental’ theory, at least to the degree that the polymer model we 
use is a fundamental model. 

The classical theory of the dynamics of polymer chains is due largely to Kirkwood 
(see Kirkwood 1967 for example) and collaborators. His approach provides a rigorous, 
systematic approach which however is, mathematically, largely intractable. This fact 
caused a number of authors to look for simplified versions of the theory, but in the same 
spirit. Rouse (1953) proposed a bead-spring model, which we shall describe and use 
below. This theory applied to polymer chains in dilute solution and neglected the so 
called hydrodynamic interaction (Kirkwood 1967, Ferry 1970), ie it held in the free- 
draining limit. Beuche (1954) considered a similar model but neglected the Brownian 
motion aspect. Zimm (1956) later introduced the hydrodynamic interaction. A more 
formal, systematic version of the theory is given by Fixman (1965). 

We are not, of course, interested in polymer solutions but in cross-linked polymer 
frameworks. The Rouse theory can be applied in a limited fashion to this system if we 
consider the cross-links as fixed points and think of each segment as moving in a medium 
made up of all the other segments. Mooney (1959) made the necessary adjustment to the 
Rouse theory to take account of fixed end points. The applicability of the resulting 
theory is discussed by Ferry (1970). 
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There are more sophisticated methods of handling cross-linked systems (eg Chompff 
and Duiser 1966) and more recent work on polymer dynamics (eg Edwards 1974) but 
our object in this paper is to take the simplest available theory, though it may be of 
limited applicability, and test our approach for it. Obviously, more sophisticated 
theories will have to be examined, at a later stage. 

In 9 2 we describe the model, including our modification of the Rouse theory, treated 
by Langevin methods rather than the usual approach which uses the Smoluchowski 
equation (Chandrasekhar 1943). In 0 3 we solve the model, giving an expression for pa.  
This is discussed in Q 4. We summarize our results in the conclusion. 

2. Tbe model 

We consider a rubber block (figure 1) sliding over a track with velocity - V. For con- 
venience we take a reference axis such that the block is at rest and the track moving with 
velocity I/. The effect of the molecules of the track is summarized by a sinusoidal force 
acting on the polymer chains in the vicinity. This is, of course, motivated by the experi- 
mental correspondence between velocity and frequency, mentioned in 0 1. We take the 
velocity V to be in the x direction and the plane of the track to be the z = 0 plane. 

Y rX,*”’ + V  

Figure 1. 

The polymer chains are assumed to be fixed in the block at one end (cross-linking) 
and free at the other, where they are subject to the sinusoidal force. They are also taken 
to be subject to a Brownian force (Kirkwood 1967) due to the medium made up of the 
rest of the block of rubber, as they move under the influence of the track molecules. The 
fact that the Brownian force is partly dissipative is the origin of our friction force. 

How do we describe the polymer chain? As discussed above we choose the Rouse 
model, rather than, for example, Kirkwood’s, in the interests of mathematical simplicity. 
Basically Rouse’s (1953) approach was to assume that only isolated points on the polymer 
chain interact with the medium. One then idealizes further, in two ways. One assumes 
that these points of interaction are equidistant, along the chain; and also that they are 
far enough apart to allow the Gaussian statistics of the single chain to be applied (Flory 
1953, 1969), in other words that distance between adjacent points of interaction obeys a 
Gaussian distribution. This is undoubtedly the mathematically most tractable way of 
incorporating the connectivity of the chains into the model. 

There are two equivalent approaches to Brownian motion (Chandrasekhar 1943, 
Wang and Uhlenbeck 1945 for example) : (i) the Langevin stochastic differential equation 
method ; and (ii) the Fokker-Planck (or Smoluchowski, if the inertial term is negligible) 
partial differential equation method. The first has possibly the advantage of offering 
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greater physical insight though it is not convenient for the calculation of explicit prob- 
ability distributions ; on the other hand it is very convenient for calculating expectation 
values of physical quantities which is virtually always enough. 

In contrast to the bulk of theoretical work in polymers, we will use the first approach 
here and consider the problem using the second approach, in a subsequent paper. We 
denote the fixed end of a typical chain as ro and the interacting points r l ,  r 2  . . . rN  . As 
discussed above we take the equilibrium probability distributions of these points as 

(1) W(Ri)  d3 R = A exp(- 3R;/2b2) d3 Ri 

where 

R, = r i - r i - l  i = 1 ,2 ,  . . .  N 

and where b is the average distance between the points. This is equivalent to a tem- 
perature-dependent Hookean force between the particles (Zimm 1956) given by 

within this formalism. We have denoted the force constant as A 2 ,  and the effective mass 
of each interacting segment as M .  The system of equations which we must consider is 

where i = 1,2,  . . . N - 1, remembering that r o  is fixed and 

YN+BLN+A2( - rN-1+rN)  = f N ( r N ,  t ) + ~ d t )  (4)  
where B is the frictional dissipation per unit mass on each particle due to the medium 
in which it is moving while A,(t) is the random force per unit mass due to the medium. 
These two terms summarize the interaction between the polymer chain and the block of 
rubber of which it is a part. This splitting into two distinct terms and the properties of 
the noise term Ai@) are discussed at some length by Chandrasekhar (1943). The dot 
notation in equations (3), (4) denotes differentiation with respect to time, of course. The 
terms f i ( r i ,  t) summarize the external sinusoidal force per unit mass on the chain, due to 
the track. Ideally this should be : (i) the same functional form for all elements ; (ii) include 
a force in the z direction ; (iii) the force in the x-y plane should only act on those elements 
below a certain z value and should be sinusoidal. 

The formalism we are describing is capable of treating such a model, at least in some 
approximation and it is certainly our intention to attempt to work it through, using the 
general form for&(ri, t) .  However, again in the interests of more immediate mathematical 
tractability, we will in this paper simplify, by assuming that : 

(i) The particle rN  is fixed in the z = 0 plane, ie the plane of the track?. 
(ii) Only this particle experiences the external sinusoidal force. 

Assumption (i) is loosely expressed. More precisely we imagine polymer chains be- 
coming bonded with the track, remaining so for a long period and breaking loose again. 
A long period means one long compared with the other characteristic times in the 
problem. As a justification for this picture we can only offer the final result. Note that 
this bond making and breaking refers to the z direction only, corresponding perhaps to 
a potential barrier, or a lack of tension (at a molecular level) in this direction. This is 

t This assumption may be softened slightly by stressing that the Nth particle need not be the last in the chain. 
However, if it is not, we ignore the existence of the subsequent ones. 
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perhaps the appropriate place to make a related point. Many of the models described in 
the introduction refer to bond making and breaking in the x direction. Our model is 
not so different from this concept as might appear at first sight. The sinusoidal force 
can be viewed as a series of potential barriers ; also the thermal barrier breaking formulae 
are sort of built into the Brownian motion formalism (Chandrasekhar 1943,s 7). 

In short, these approximations allow us to ignore the y ,  z components of the equation 
and put 

f!X)(Xir t) = 0, i = 1,2, . . .  N-1 
( 5 )  

flv"'(x,, t )  = f cos d(x, - Vt)  

X + B s k + L 2 D X  = F ( X ) + A  (6)  

where d is constant. We can summarize our equations in matrix form as 

where the components of the N-dimensional equation are x i ,  the x components of the 
position vectors ri. The components of F are given by 

Fl = A2x0 ,  (7) 
F ,  given by equation ( 5 )  and all other components zero. The N vector A is the vector 
of random forces. The N x N matrix D is given by 

. . .  
2 - 1  0 0 

- 1  2 - 1  0 

0 -1  2 - 1  0 . . .  
* . .  -1  2 - 1 1  

0 - 1  1 . . .  
; 

3. Solution 

Our object is to solve equation (6). I t  is necessary to use an approximation method. 
First we notice that xo can be chosen to be zero, since it is the track that is moving, 
not the rubber block. Now it is reasonable to assume that F,  the friction force, is small 
compared with other quantities so we use the method of successive approximation as 
follows. Let X o ( t )  be the solution of equation (6)  with F = 0. It can be found explicitly. 
The next correction x,(t)  is found by solving 

(9) 8, + sx,  + P D X ,  = F(X,( t ) )  

which can also be solved explicitly. One could continue like this, getting terms of order F 2  
but let us neglect these. First the explicit form of Xo(t)? Note that this is formally the 
harmonic oscillator problem treated by Chandrasekhar (1943) except that D is a matrix. 
However, it commutes with all other quantities in the problem, that is to say, with B 
which is a scalar. Therefore, we can use Chandrasekhar's formulae, remembering that 
the functions involved are now matrices. 

So X o ( t )  is given by (Chandrasekhar 1943) 
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where pl, p 2  are the matrix functions 

- i B  f (dB2 - ;lzD)1’2 

while $(c, 5 )  is the matrix function 

97 1 

(1  1) 

where we have used Xi for X,(t = 0) and U i  for X,(C = 0). To get final answers we will 
of course have to choose coordinates where the matrix D is diagonal, ie normal co- 
ordinates. 

Now, what we are really interested in is B((XTX,) )  where we have used standard 
transpose notation and where the brackets denote averaging over : (i) the distribution 
of values of the random variable XTXl at time t ;  and (ii) all possible initial conditions. 
We will then further average over time to eliminate micro-oscillations, This is then the 
average rate of dissipation of energy which can be equated to RI/ where R is the friction 
force due to this polymer chain. Equation (9) has explicit time dependence on the right 
so we can once more borrow the formulae of Chandrasekhar (1943) to calculate 

where 

4(t, 5 )  = (pl eu1(*-5)-p2 e”2(‘-c))/(pl - p 2 ) .  (16) 

We are interested in the steady-state situation which develops for large t ,  so taking into 
account equation ( l l ) ,  it is obvious that we can neglect the exponential, or transient, 
terms in equation (15). Introducing the notation 

(17) 

(18) 
we can write (Note: H is a scalar quantity. Also while Fo has only one nonzero term 
in our original coordinates, this will not be true in normal coordinates which we will 
eventually have to switch to.) : 

F = F ,  cos[d(X,&) - Vt)]  

w, 5 1, 5 2 )  = G9T(4 5 lM(t, 5 2 ) F O  

and 
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We now have to find the expectation value of this quantity. First the average over initial 
conditions. This refers to the vectors a, ,  a2 given by equations (13), (14) which we claim 
are multinormal variables. Let the bond be formed at time t = 0. Up to this time the 
chain will not be subject to the force F and will obey the equilibrium distribution for a 
linked chain, ie the Maxwell-Boltzmann distribution. So the distribution function for 
X i ,  Ui of equations (13), (14) will be (cf equation (1)) 

W ( X i ,  Vi) = K exp[ - (4M U' Ui + A 2 X T D X ) / k T ]  (22) 

which is multinormal, with mean zero. It follows that a , ,  a2 are. 
With respect to the other averaging, it is well known (Chandrasekhar 1943) that the 

random force term of equation (10) is multinormal. It follows that XoN( t ) ,  being a sum 
of normal variables is normal. Its mean is also zero. Remembering the definition of the 
characteristic function of a distribution and its form, in the Gaussian case, we deduce 
that 

d20: + exp ( - Yj- - idV(t1- t24] 

where 

0: = < W O N K  1) + x0dt2))2>> (24) 

0: = <(x0N(t1)-x0dt2))2~. (25) 

These quantities can be calculated as explicit functions of tl, t2 by going over to normal 
coordinates. The expressions are long; they also make explicit evaluation, in closed 
form, impossible. It is straightforward to show that they are sums of exponentials and 
constant terms. By expanding the exponentials of exponentials in infinite series, it is 
straightforward, though tedious, to show that most of these are negligible in the limit of 
large t, which is what we are interested in. The remaining terms are the constants and 
certain of the cross terms resulting from averaging the product of two noise functions. 
The neglect of these involves, in the large B limit (see below, eg (35)), neglecting d2b2. 
This could be understood as saying that the chain is confined to a region small compared 
with the wavelength of the force, which may well be true in real rubbers where the density 
of chains and other ingredients is large. Implicit in this statement is the view that the 
essentially artificial parameter b is determined by the effects of the medium as well as by 
the chain itself. In this paper we neglect d2b2. Averaging over oscillations kills the first 
term in equation (23). So, our final expr'ession is 

wwl> = :ReJ-)t, J-;dS2H(t,tl, t2)exP[-i~(51-t2)1 (26) 

where 

w = dV. (27) 

To evaluate this, we go over to normal coordinates where the matrix D is diagonal, with 
eigenvalues yi, i = 1 , 2 , .  . . N .  Let Q be the matrix that diagonalizes D, ie 
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Of course Q is orthogonal. In the appendix it is shown that 

Q,, = (m)1'2sin( 4 
2ns(r - +) ) 
2N+1 

r , s  = 1,2, 

y, = 4sin2 - (Z) 
Introducing the notation 

A; = P y ,  

r = 4 2 ,  

and &(t, 5 )  for the function defined by equation (16) except that yi replaces D in the 
quantities pl, p 2 ,  we get 

We equate this quantity to RVwhere R is the friction force due to this chain and Vis the 
velocity. So finally we have 

where 2; = L 2 y i  is temperature-dependent, since A 2  = 3kT/Mb2 as also is B in general. 
The denominators in equation (34) are all of the classical form associated with resonance 
phenomena. In fact our answer is what one would get from the entirely trivial model 
assuming that the end of the chain is subject to a time-dependent, space-independent, 
oscillating force, of frequency o = Vd, and forgetting all about random forces. This is 
the first, most simple-minded model that one could build, and it is interesting, though 
not entirely unexpected, that the above, presumably more realistic, model reduces to it, 
in first approximation. 

In this context, it is always justified to neglect the acceleration term. This corre- 
sponds to B and A: becoming large in such a way that 

So, in this limit equation (34) becomes 

where 

zi = B/Az (37) 

identifiable as relaxation times of the polymer chain. Equation (36) is therefore the 
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friction force due to a single polymer chain, in contact with the track. This must be 
multiplied by n the average number of chains bonded at a given time. A more general 
version of our present approach might very well be capable of predicting an expression 
for this number, but here we satisfy ourselves with a rather crude argument to derive the 
temperature dependence of n which is what we are really interested in. Consider the 
dynamics of our chain in the z direction. Let the force due to the track, in this direction, 
be independent of time, ie non-oscillatory. We then expect that, after a sufficiently long 
time, the distribution of particles at z l ,  zz etc will be the Maxwell-Boltzmann distribu- 
tion. Concentrating on z ,  one sees that it will be subject to a Gaussian force due to the 
fact that zo is fixed. This will be temperature-independent. Also z,  will be subject to a 
potential barrier due to the track which we approximate, in the region of interest by a 
quadratic function. Let us assume that this region of interest is small enough to allow 
us to neglect the Gaussian force due to the connectivity of the chain and the fact that zo 
is fixed. So the probability distribution of zN can be approximated by a Gaussian of the 
form 

(38) ~ ( Z N )  d Z N  = A eXp[ - C(ZN - a)’/kT] 

where a is the equilibrium point of the potential, c is the other shape parameter and A 
is a normalization constant. The important point is that the variance is proportional to 
kT. The above form corresponds to an attractive force above and a repulsive force 
below a, which is broadly in agreement with the usual models of Van der Waals type 
forces. Now we take it that the number of bonds will be proportional to the number of 
particles that find themselves well below a, out on the tail of the Gaussian, which number 
will be proportional to (kT)’” by standard arguments. It will also be proportional to 
the number of track molecules in the ‘interaction region’; we take it that a similar 
argument applies to these, and that we get another factor (kT)’”, giving in all a factor kT. 
The remaining temperature dependence will be very weak and is neglected. 

The load dependence of n is also of interest ; we bypass the issue here and take it to 
be linear in the load with, possibly, other weaker load dependence to take account of 
experimental results indicating deviations from Amontons’ law. 

Taking into account the factor kT in n, and absorbing all unknown constants into 
one unitless parameter we finally get the coefficient of adhesive friction 

where equation (31) has been used. The constant C has no temperature dependence. 
Note that we have taken N to be the same for all chains in interaction with the track. 
More realistically it can be regarded as an average value. 

By equations (29), (30) one sees that 

p, = cotZ (;it);). - 
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4. Discussion 

The expression (39) will obviously have the Williams-Landel-Ferry property since, in 
each term, the velocity and temperature dependence are totally contained in the com- 
bination 

x = o B / L 2  (43) 
MdVBb' - - 

3kT ' 

Furthermore, in any bead-spring model, the viscoelastic functions are functions of the 
combination given by equation (43). This is equivalent to saying that our shifting factor 
will be the same as that found in viscoelastic experiments, which is in agreement with the 
experimental results of Grosch (1963). 

We next examine what our model says about the correlation of the maxima of pa( V )  
and G"(o), as found by Grosch (1963). The Rouse theory predicts, for the loss modulus 
(eg Ferry 1970, chap 10) 

or; N 
Gr'(o) = K 1 

I = 1 1 + o2r;2 
(45) 

where K is linear in temperature and the 7:  are the relaxation times appropriate to chains 
with two fixed ends. These are well known and can be derived as indicated in the 
appendix. Now, both G" and pa are functions of the variable x (equation (43)) and purely 
numerical factors. Both functions have simple maxima. A plot of pa is given in figure 2; 
G" has a similar structure. Now this maximum will be at x equal to some numerical 
factor, different in each case, though this is irrelevant. Remembering the definition of x 
(equation (43)) and equation (27) we see that Grosch's result follows trivially, if one keeps 
in mind the function B is the same in both functions; ie the constant of proportionality 
between the two maximum points will be a numerical factor times d and so will be 
independent of the rubber parameters, since the N dependence is negligible. 

2 401 

ri 
I 201 

1 -  
0 00- - ~ n n  nnn ~n 

v!b...- 
,O 8 00 

- 
I2 00 

Lg x 

Figure 2. Least-squares fit of the model to Grosch's master curve (A) for the isomerized 
natural rubber E on clean silicon carbide, reference temperature To = 20" C. Our curve (B) 
is the one with open circles on it. 
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It remains to actually fit our prediction to the experimental curve. Grosch (1963) 
gives a master curve of lg Va, against pa (see figure 2) where a, is the shift function (more 
correctly, its logarithm is) and, in our model, is given by 

where T,  is the standard reference temperature. The variable that occurs in our expres- 
sions, namely oB/A2,  will be proportional to VaT but with the proportionality constant 
not readily evaluable, so we fit the function, 

where 

x = VaT 

and CN, K are adjustable parameters, to Grosch's curve for the isomerized natural 
rubber E on clean silicon carbide using a reference temperature 20" C .  The best least- 
squares fit is shown, for N = 100 in figure 2 : our curve is the one with the open circles. 
Note that this is a logarithmic plot and extends over a huge range of values. While our 
curve has the same general shape as the experimental curve it is not wide enough to fit 
it well ; the point should be made however that it would be extraordinary if such a simple 
model did fit such a huge range of data, with only two parameters (or three if one includes 
N ) .  The fit was not substantially improved by changing the value of N .  The best values 
of our parameters for this curve were 

CN = 0*088/(2N+ 1) (49) 

1gK = -7. (50) 
I t  should be stressed that we could easily choose CN so that the maximum points of both 
curves agree. The width, however, presents a real problem. 

5. Conclusion 

From a very simple polymer model we have deduced an expression for the coefficient of 
adhesive friction which, in agreement with experiment, has the WLF temperature 
dependence, is correlated with the loss modulus and has the same general structure as 
the experimental curves ; however, with two parameters, our fit to Grosch's experimental 
curve is not so good. This weakness is, no doubt, attributable to our many simplifying 
assumptions, which we restate briefly, here. 

Let us take the point of view, without discussion, that the diffusion model is a correct 
physical description of polymer dynamics. Then our model is an approximation in the 
sense that it used the idealization of Rouse and fixed points to simulate cross-links. Also, 
we picture the force due to the track as acting on only one element of the chain rather 
than a z dependent force acting on all elements. Obviously, our sinusoidal force is an 
idealization, with some validity if the track is crystalline in structure but which otherwise 
must be improved upon. Our use of perturbation theory possibly needs to be justified 
slightly more though it is an extremely reasonable assumption that the interaction 
between chains and track is very weak compared with the other forces on the chains. 
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Implicit however in this assumption is our neglect of strong adsorption of monomers 
of the chain by the track. Finally, there is our neglect of d 2 b 2 .  

Given the strong approximations we have made, the model is an undoubted success 
and certainly warrants further sophistication with the aim of achieving precise quantita- 
tive agreement with experiment. A relevant final point is that Grosch’s curve may 
include effects other than adhesive friction in the narrow sense that we are using it here 
and that this is the cause of at least some of the discrepancy. 
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Appendix 

Our object is to find the eigenvalues of the matrix D, given by equation (8) and the 
transformation which diagonalizes it. This involves finding its eigenvectors. Our 
method owes a lot to a paper by Synge (1973). The basic problem is the evaluation of 
the determinant 

a - 1  0 . . .  

- 1  a - 1  0 . . .  
0 - 1  a - 1  0 . . .  

0 0 - 1  a - 1  

0 0 0 - 1  a, 

AL = 

where we put 
a1 = a + €  

and where we are interested in the case z = - 1. We also use the notation 

A N  = A i ( €  = 0). (‘4.3) 
Now, it is easy to show that A N  obeys the difference equation 

AN = aAN-l-AN-2 

and that a particular solution of (A.4) is ZN where (Synge 1973) 

z = & f [(&)Z - 111’2. 64.5) 
The general solution is a linear sum of these two solutions. By fitting initial conditions, 
ie values for A 1 ,  A 2 ,  it is easy to show that 

(ZN+ 1 - (1/Z)N + 1) 

Z-il/Z) AN = ( A 4  
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where Z can be taken as one of the solutions (AS) say the one with plus sign and 1/Z the 
other. By putting 

Z = exp(i0) (A.7) 

the usual normal-coordinate formulae for fixed ends follow easily from equation (A.6). 
Now 

A i  = aAN-1-AN-Z+tAN-1 ( A 4  

64.9) 
sin(N + l)e + t sin Ne 

sin 8 
- - 

by equation (A.7). For eigenvalues, we want the zeros of AL. These are easy to find for 
our case t = - 1 and also for t = 0, 1. We specialize to the case c = - 1 and find that 
the zeros are given by 

2 ~ ( r  - f) e, = ___ 
2 N + 1 '  

r = 1,2,  

or from equations (A.7), (AS) 

2n(r - 3)\ 
a, = 2cos ___ 

( 2 N + 1 ,  

so that our eigenvalues are 

yr  = 4sin2 - (%2) 

. . .  N (A. 10) 

(A . l l )  

(A.12) 

The solution of the eigenvector equation can easily be shown to be 

x!' = A r l  (A. 13) 

where the value of A!l1 will depend on the eigenvalue in question. To get the trans- 
formation matrix we need normalized eigenvectors ; to find the normalization constant 
we need to evaluate the sum of squares of As given by equation (A.6). It is elementary to 
prove the following identity : 

(A. 14) 

One deduces 
matrix Q are 

that the normalized eigenvectors, and the elements of the transformation 
given by 

xr) = Q,, = (-)'"sin( 4 2m(r  - +) ) 
2N+1 2N+1 ' 

(A. 15) 
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